Performance limits of labriform propulsion and correlates with fin shape and motion.

نویسندگان

  • Jeffrey A Walker
  • Mark W Westneat
چکیده

Labriform locomotion, which is powered by oscillating the paired pectoral fins, varies along a continuum from rowing the fins back and forth to flapping the fins up and down. It has generally been assumed (i) that flapping is more mechanically efficient than rowing, a hypothesis confirmed by a recent simulation experiment, and (ii) that flapping should be associated with wing-shaped fins while rowing should be associated with paddle-shaped fins. To determine whether these hypotheses and the results of the simulation experiment are consistent with natural variation, we compared the steady swimming performance (critical swimming speed) of four species of labrid fish (Cirrhilabrus rubripinnis, Pseudocheilinus octotaenia, Gomphosus varius and Halichoeres bivittatus) selected to form two pairs of closely related species that vary in fin shape and in the direction of fin motion. The results were consistent with expectations. Within each pair, the species with the best swimming performance also had (i) a fin shape characterized by a higher aspect ratio, a longer leading edge relative to the trailing edge fin rays and the center of fin area located closer to the fin base, and (ii) a steeper (more dorsoventral) stroke plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research on Under-actuated Flexible Pectoral Fin of Labriform Fish

The new propulsor, whose inspiration is from pectoral fins of fishes, has arisen increasing attention. To improve the performance of the existing labriform bionic pectoral fin, based on the structure and control mechanism of real fish pectoral fin, the under-actuated technology was utilized to design a new flexible bionic pectoral fin. Then, the kinematic model of pectoral fin during fish forwa...

متن کامل

Wave energy and swimming performance shape coral reef fish assemblages.

Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morp...

متن کامل

Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer.

Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral-caudal gait transition occurs at a threshold speed termed U(p-c). The objective of this study was to partition aerobic and anaerobic swimming costs at speeds below and above the U(p-c) in the s...

متن کامل

The effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus.

Many fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (U(max)), labriform-undulatory gait transition speed (U(tr...

متن کامل

Kinematics, dynamics, and energetics of rowing and flapping propulsion in fishes.

The shape and motion of the pectoral fins vary considerably among fishes that swim in the labriform mode. Pectoral fin motion in fishes is highly variable, but one conspicuous axis of this variation is the rowing-flapping axis. At one extreme of this axis, paddle-shaped fins row back and forth in a plane that is parallel to fish motion, while at the other extreme, wing-shaped fins flap up and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002